Displaying 19451 - 19500 of 37048
Request date Sort ascending | Organisation name | Country | Search type | Topic | Link | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Tisalabs | Ireland | Expertise Request | Reliable Services and Smart Security (HORIZON-JU-SNS-2023-STREAM-B-01-04) | F&T portal | ||||||
We are looking to participate into this call and we would like to get with organizations that have a use case. We are a security company focusing on edge software deployment and management as well as running AI/ML at the dge. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |