Skip to main content

Partner search

Displaying 20051 - 20100 of 37636
Date between
Request date Sort ascending Organisation name Country Search type Topic Link
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 NUROMEDIA GMBH Germany Expertise Request Improving the global demand supply forecast of the semiconductor supply chain (IA) (HORIZON-KDT-JU-2023-3-IA-TOPIC-1) F&T portal
Nuromedia GmbH is a German software engineering & multimedia company with more than 15 years of experience in national and EU funded projects. Our team offers competences like software engineering, gamification, 2D/3D animation, UI/UX design, AR, MR & VR development, smart city, 5G, IoT, big data,digital twin and machine learning/AI. Our industry focus is Health, Energy, Telecommunication, E-learning, Education, Industry 4.0, Agriculture, Automotive. Contact info: [email protected]
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.
05/04/2023 Sima Sinaei Vatican City Expertise Request Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) F&T portal
Distributed Artificial Intelligence Systems -
Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent.